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Effects of Low Density Lipoprotein Receptor-Related
Protein-1 on the Expression of Platelet-Derived
Growth Factor b-Receptor In Vitro
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Abstract The lowdensity lipoprotein receptor related protein-1 (LRP-1) is a cargo transport receptor that undergoes
constitutive endocytosis and recycling. Platelet-derived growth factor-BB (PDGF-BB) binds to LRP-1 andmay bridge LRP-
1 to PDGF receptors. Bridging of LRP-1 to other receptors by bifunctional ligands may represent a general mechanism
whereby LRP-1 facilitates internalization of membrane proteins. The goal of this study was to determine whether LRP-1
regulates cell-surface levels of PDGF b-receptor or PDGF b-receptor degradation following treatment with PDGF-BB.
Unexpectedly, in both murine embryonic fibroblasts (MEFs) and HT 1080 fibrosarcoma cells, LRP-1 expression was
associated with increased levels of PDGF b-receptor. In MEFs, the mechanism involved increased PDGF b-receptor
transcription and/or RNA stabilization. LRP-1 expression was not associated with increased levels of PDGF b-receptor in
Chinese hamster ovary (CHO) cells, suggesting that cell context is important. The kinetics of PDGF b-receptor
phosphorylation, in response to PDGF-BB, and the extent of degradation of PDGF b-receptor were equivalent in LRP-1-
expressing and -deficientMEFs.Weconclude that PDGFb-receptor expression and cell surface levelsmaybe regulated by
LRP-1; however, this activity is cell type-specific. LRP-1 does not directly regulate PDGF b-receptor phosphorylation or
degradation in PDGF-BB-treated cells. J. Cell. Biochem. 93: 1169–1177, 2004. � 2004 Wiley-Liss, Inc.
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Low density lipoprotein receptor related pro-
tein-1 (LRP-1/CD91) is a 600-kDa type I mem-
brane protein and amember of the LDL receptor
gene family [Strickland et al., 2002]. In its
mature form, LRP-1 consists of an N-terminal
515-kDa heavy chain that is entirely extracel-
lular and an 85-kDa light chain, which has a
transmembrane domain and cytoplasmic tail.
Theheavy chain isanchored to the cell surfaceby
non-covalent interactions with the light chain.
LRP-1 and other members of this gene family
have diverse effects on cell physiology. By
binding over 40 distinct ligands, LRP-1 may

regulate lipid homeostasis, extracellular proteo-
lysis, growth factor/cytokine activity, the com-
position of the extracellular matrix, and the
immune response [Strickland et al., 2002]. LRP-
1 also may regulate the composition of the
plasma membrane. A number of plasma mem-
brane proteins, including the urokinase receptor
(uPAR), amyloid precursor protein (APP), and
tissue factor (TF), undergo endocytosis in com-
plex with LRP-1 [Conese et al., 1995; Knauer
et al., 1996;Hamik et al., 1999].As a result, LRP-
1 down-regulates the levels of these proteins at
the cell surface. Themechanismbywhich LRP-1
facilitates endocytosis of other membrane pro-
teins is not completely understood; however,
bifunctional ligands or intracellular adaptor
proteins may be necessary to bridge LRP-1 to
the other membrane proteins [Strickland et al.,
2002]. LRP-1 also may regulate the composition
of the plasma membrane by regulating mem-
braneprotein transport in the secretorypathway
[Salicioni et al., 2004].
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The cytoplasmic tail of the LRP-1 light chain
includes two NPxY sequences that may be
targets for tyrosine phosphorylation [Barnes
et al., 2001]. This is important because NPxY
motifs, in LDL receptor family members, func-
tion as binding sites for signaling adaptor
proteins, such as Shc and Dab1, and thereby
regulate cell signaling [Trommsdorff et al.,
1998; Gotthardt et al., 2000; Barnes et al.,
2001]. Platelet-derived growth factor (PDGF) is
unique amongst growth factors in its capacity
to induce tyrosine phosphorylation of LRP-1
[Boucher et al., 2002; Loukinova et al., 2002].
When cells are treated with PDGF-BB, the
growth factor induces dimerization of either
PDGF a- or b-receptors, with subsequent activ-
ation of receptor tyrosine kinase activity
[Claesson-Welsh, 1994]. Many proteins are
tyrosine-phosphorylated downstream of PDGF
receptors; however, the response is limited by
receptor internalization and degradation in
lysosomes [Sorkin et al., 1991; Claesson-Welsh,
1994].

Tissue-specificknock-out of theLRP-1gene in
mouse vascular smooth muscle cells (VSMCs)
increases the level of PDGF b-receptor and its
degree of tyrosine-phosphorylation in vivo
[Boucher et al., 2003]. Because PDGF-BB binds
directly to LRP-1 [Loukinova et al., 2002], the
opportunity exists for the formation of bridged
PDGF b-receptor–LRP-1 complexes at the cell
surface. These complexes may demonstrate
altered endocytosis and/or survival compared
with PDGF receptor dimers and thus, account
for the difference in PDGF b-receptor expres-
sion and activation in LRP-1-deficient VSMCs
in vivo. Alternatively, regulation of PDGF
receptor expression and activity in VSMCs
in vivo may reflect release from LRP-1-regu-
lated signaling pathways or the effects of LRP-1
on protein trafficking in the secretory pathway.

The goal of this study was to determine
whether LRP-1 regulates cell-surface levels of
PDGF b-receptor in cells in culture. We report
the unexpected result, that LRP-1 expression is
associatedwith increased levels of total and cell-
surface PDGF b-receptor in fibroblast-like cells,
includingmurine embryonic fibroblasts (MEFs)
and inHT1080 fibrosarcoma cells. The effects of
LRP-1 on PDGF b-receptor in MEFs were
explained by an increase in RNA transcription
and/or stability. In other cell types, including
Chinese hamster ovary (CHO) cells and human
VSMCs, LRP-1 expression was not associated

with increased levels of PDGF b-receptor,
suggesting that cell context is important. PDGF
b-receptor phosphorylation and subsequent b-
receptor degradation were similar in LRP-1-
positive and -negative MEFs.

MATERIALS AND METHODS

Reagents

PDGF-BBwas purchased fromR&DSystems
(Minneapolis, MN). Rabbit PDGF b-receptor-
specific polyclonal antibody was from Santa
Cruz Biotechnology, Inc. (Santa Cruz, CA).
Phosphotyrosine-specific monoclonal antibody
PY20 was from Transduction Laboratories
(Lexington, KY). Epidermal growth factor
(EGF) receptor-specific antibody was from
Upstate (Lake Placid, NY). Mouse monoclonal
antibody 8G1, which is specific for the LRP-1
heavy chain, and 11H4, which recognizes the
light chain, were purified from hybridoma-
conditioned medium. MAP kinase/ERK 1,2-
specific antibody was from ZYMED (South
San Francisco, CA). Monoclonal b-actin-specific
antibody was from Sigma (St. Louis, MO). The
biotinylation reagent, sulfo-NHS-LC-biotin,
was purchased from Pierce (Rockford, IL).
Glutathione-S-transferase-receptor associated
protein (GST-RAP) was expressed in bacteria
and purified as described previously [Webb
et al., 1999]. The activity of purified GST-RAP
was confirmed by competition for receptor-
binding with methylamine-activated a2-macro-
globulin. Activated a2-macroglobulin binds to
LRP-1, but not to any other LDL receptor family
members, making this an appropriate reagent
for testing the activity of RAP in this study
[Strickland et al., 1990; Webb et al., 1995].

Cell Culture

LRP-1-deficient MEFs (MEF-2 cells), LRP-
1þ/�MEFs (Pseudomonas exotoxin A (PEA)-
10 cells), and wild-type MEFs (MEF-1 cells)
were obtained from the American Type Culture
Collection (ATCC). MEF-2 and PEA-10 cells
were cloned from the same culture of LRP-1þ/�
cells, following selection with PEA [Willnow
and Herz, 1994]. LRP-1 deficiency provides one
mechanism by which cells gain resistance to
PEA. MEF-1 cells are from the same mouse
strain. B6 cells are MEF-2 cells that were
transfected for stable expression of full-length
humanLRP-1. These cells were kindly provided
by Dr. Dudley Strickland (Holland Labora-
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tories, American Red Cross, Rockville, MD). All
MEFs were cultured in DMEM with 10% fetal
bovine serum (FBS), 100 U/ml penicillin, and
100 mg/ml streptomycin at 378C in 5% CO2.
HT 1080 fibrosarcoma cells were obtained

from the ATCC and cultured in MEM supple-
mented with 10% FBS, 100 U/ml penicillin, and
100 mg/ml streptomycin at 378C in 5% CO2. Rat
VSMCs were isolated from rat aortas by en-
zymatic digestion, as previously described
[Geisterfer et al., 1988] and kindly provided by
Dr. Gary Owens (University of Virginia). The
cells were cultured in DMEM/F12 supplemen-
tedwith 10%FBS, 0.68mML-glutamine, 100U/
ml penicillin, and 100 mg/ml streptomycin.
Human aortic VSMCs were obtained from the
ATCC (CRL-1999) and cultured in Ham’s F12
medium supplemented with 10% FBS, 2 mM L-
glutamine, 0.01 mg/ml insulin, 0.01 mg/ml
transferrin, 10 ng/ml sodium selenite, 0.03 mg/
ml endothelial cell growth supplement, 0.05mg/
ml ascorbic acid, 10 mMHEPES pH 7.4, 10 mM
TES, 100 U/ml penicillin, and 100 mg/ml strep-
tomycin. Wild-type CHO-K1 cells and LRP-1-
deficient CHO 13-5-1 cells [FitzGerald et al.,
1995] were cultured in Ham’s F12 medium,
supplemented with 5% FBS optimized for CHO
cells (HyClone Laboratories, Logan, UT), 2 mM
L-glutamine, 100 U/ml penicillin, and 100 mg/ml
streptomycin.

Preparation of siRNA and Transfection

Duplex siRNA was synthesized by Dharma-
com Research (Lafayette, CO). The targeted
sequence was determined by analysis of the
human LRP-1 cDNA, in the region 50–100 nuc-
leotides downstream of the start codon. We
searched for a sequence,AA(N19),with approxi-
mately 50% GC-content and identified nucleo-
tides 73–93 (AAGACTTGCAGCCCCAAGCAG)
of the coding region. The selected sequence was
subjected to a Blast search to optimize specific
silencing of LRP-1 expression. A scrambled
LRP-1 siRNA was prepared as a control. HT
1080 cells and human VSMCs were seeded into
6-well plates and then transfected with 1.0 mg/
well of siRNA for 4 h in serum-free medium,
using GeneSilencer transfection reagent (Gene
Therapy System, Inc., San Diego, CA). The
mediumwas then replacedwith serum-contain-
ing MEM or Ham’s F12 medium. Cells were
assayed to determine LRP-1 expression by
immunoblot analysis, using antibody 8G1, 24–
120 h after transfection.

Immunoblot Analysis

Cells were washed three times with 20 mM
sodium phosphate, 150 mMNaCl, pH 7.4 (PBS)
and then extracted in RIPA buffer, which
contains 1% Triton X-100, 0.5% sodium deox-
ycholate, 0.1% SDS, and proteinase inhibitors.
Equal amounts of cellular protein were sub-
jected to SDS–PAGE, under non-reducing con-
ditions for detection of LRP-1 and under
reducing conditions for detection of PDGF b-
receptor, EGF receptor, or b-actin. Proteins
were electro-transferred to polyvinylidene fluo-
ride membranes. The membranes were probed
with specific antibodies followed by peroxidase-
conjugated secondary antibodies and developed
with Western Lightning Chemiluminescence
reagent (Perkin Elmer Life Sciences, Boston,
MA). To compare band intensities within a sin-
gle blot, densitometry was performed and the
results analyzed using ImageQuant software.

Surface-Protein Biotinylation

Confluent cultures were washed three times
with PBS and then treated with themembrane-
impermeable biotinylation reagent, sulfo-NHS-
LC-biotin (0.5 mg/ml), for 30 min at 48C. After
biotin labeling, the cells were washed and then
extracted in RIPA buffer. Biotin-labeled pro-
teins in the extracts were affinity-precipitated
with Streptavidin–Sepharose (Amersham Bio-
sciences, Uppsla, Sweden), as previously
described [Salicioni et al., 2004]. The affinity
precipitates were then subjected to immunoblot
analysis.

Northern Blot Analysis

The 5.2 kb complete coding sequence of the
mouse PDGF b-receptor cDNAwas excisedwith
BamHI to generate the 312 base pair probe for
Northern blot analysis. Total cellular RNA was
isolated from confluent MEF-1 andMEF-2 cells
using Trizol reagent (Gibco BRL, Life Technol-
ogy, Frederick,MD). RNA (10 mg) was subjected
to electrophoresis on 1% denaturing formalde-
hyde/agarose gels and transferred to Nitran
nylon membranes. Prehybridization was per-
formed for 20 min at 688C, using QuikHyb
hybridization solution (Stratagene, La Jolla,
CA).Membraneswere then incubated for 12hat
688C with the [32P]-labeled mouse PDGF-b
receptor cDNA probe. The membranes were
washed twice at 228C in 2�SSCwith 0.1% (w/v)
SDS and then once for 30 min at 608C in 0.1�
SSC with 0.1% (w/v) SDS. As a control for load,
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membranes were rehybridized with a cDNA
probe for b-actin (Ambion, Inc., Austin, TX).
PDGF-b receptor and b-actin band intensities
were determined by densitometry and the data
were analyzed using ImageQuant software.
Results were standardized relative to the b-
actin signals.

PDGF-BB Stimulation

MEF-1 and MEF-2 cells were seeded in 100-
mm2 plates in DMEM containing 10% FBS
and grown to confluence. The cultures were
washed three times with PBS and then serum-
starved for 18 h. Cells were treated with 0.8 nM
PDGF-BB or vehicle at 378C for different times.
After incubation with PDGF-BB, cells were
washed with ice-cold PBS and extracted in
RIPA buffer. The extracts were subjected to
immunoblot analysis to detect tyrosine-phos-
phorylated proteins and PDGF b-receptor.

Rat VSMCs were serum-starved in DMEM/
F12 medium containing 0.5 mM insulin, 5 mg/ml
transferrin, 0.2mMascorbate, 38 nM selenium,
0.68 mM glutamine, 100 U/ml penicillin, and
100 mg/ml streptomycin for 18 h. These VSMCs
and serum-starvedMEFswere pre-treatedwith
180 nM GST-RAP or with vehicle (PBS) for
30 min and then stimulated with the indicated
concentrations of PDGF-BB (0.01–0.8 nM) for
8 h in the presence of GST-RAP. Surface protein
biotinylation and immunoblot analysis were
performed to detect cell-surface and total PDGF
b-receptor.

RESULTS

LRP-1 Regulates PDGF b-Receptor
Expression in MEFs

LRP-1 regulates the cell-surface level ofmany
membrane proteins, including uPAR, APP, TF,
and b1 integrin [Conese et al., 1995; Knauer
et al., 1996; Hamik et al., 1999; Salicioni et al.,
2004]. Given that PDGF-BB binds directly to
LRP-1 and therefore may bridge LRP-1 to
PDGF receptors [Loukinova et al., 2002], we
undertook studies to determine whether LRP-1
regulates the PDGF b-receptor. Initially, we
compared total levels of PDGF b-receptor in
whole cell extracts fromLRP-1-deficientMEF-2
cells, LRP-1(þ/�)PEA-10 cells, LRP-1(þ/
þ)MEF-1 cells, and B6 cells, which are MEF-2
cells transfected to express full-length human
LRP-1. Extracts were prepared after the cultu-
res became confluent. Figure 1A confirms that

MEF-2 cells lack immunoreactivity for theLRP-
1 light chain. The level of LRP-1 in PEA-10 cells
was decreased compared with MEF-1 cells, as
previously described [Willnow and Herz, 1994].
B6 cells demonstrated low levels of LRP-1, as

Fig. 1. Platelet-derived growth factor (PDGF) b-receptor
expression in murine embryonic fibroblasts (MEFs). MEF-1,
Pseudomonas exotoxin A (PEA)-10, MEF-2, and B6 cells were
cultured until confluent in serum-containing medium. Cell
extracts were then prepared and equal amounts of cellular
proteinwere subjected to immunoblot analysis.A: LRP-1 content
wasdeterminedusing antibodies11H4and8G1.Antibody11H4
recognizes the light chain whereas 8G1 recognizes the heavy
chain and is specific for human LRP-1. B: The same cell extracts
were examined by immunoblot analysis for PDGF b-receptor.
These lanes are labeled ‘‘total.’’Membraneswere also probed for
total ERK (T-ERK), as a control for load. In the lanes labeled ‘‘cell
surface,’’ cells were surface-labeled with biotin and Streptavidin
affinity precipitates were prepared. These were probed by
immunoblot analysis for PDGF b-receptor. The bar graph
compares the total level of PDGF b-receptor (total) or the level
of cell-surface PDGF b-receptor (cell surface) to that present in
MEF-1 cells. The levels were determined by densitometry and
analyzed using ImageQuant software (mean� SEM, n¼3).
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determined with antibody 11H4; however, this
antibody may preferentially detect murine
LRP-1, compared with human LRP-1. A more
robust signal was observed when we probed
the samemembranes with antibody 8G1, which
recognizes the human LRP-1 heavy chain.
MEF whole cell extracts were then probed to

detect total cellular PDGF b-receptor. As shown
in Figure 1B, the level of PDGF b-receptor was
decreased by greater than 50% in the LRP-1-
deficient MEF-2 cells, compared with either
MEF-1 cells or PEA-10 cells, both of which
express LRP-1. Importantly, both the mature
form of PDGF b-receptor (190-kDa) and the
170-kDa species, which is an intracellular
PDGF b-receptor precursor [Claesson-Welsh
et al., 1988], were affected similarly, suggesting
that the difference in PDGF b-receptor levels
did not reflect altered maturation of newly
synthesized protein. To confirm that the dec-
rease in PDGF b-receptor in MEF-2 cells was
due to LRP-1 deficiency, we examined B6 cells,
in which LRP-1 is re-expressed. In these cells,
increased amounts of PDGF b-receptor were
observed, suggesting phenotypic rescue.
To compare cell-surface PDGF b-receptor in

MEFs, we used a membrane-impermeable bio-
tinylation reagent. Streptavidin affinity pre-
cipitates were prepared and subjected to
immunoblot analysis for PDGF b-receptor.
Figure 1B shows that the level of cell-surface
PDGF b-receptor was decreased in MEF-2 cells
and the extent of the decrease was in proportion
to that observed in whole cell extracts.
To further explore the relationship between

LRP-1 expression and expression of PDGF b-
receptor,we compared cells thatweremaintain-
ed under different conditions of culture conflu-
ency and serum-supplementation. In LRP-1-
expressing MEF-1 cells, high confluency and
serum deprivation favored PDGF b-receptor
expression (Fig. 2A), as has been observed in
other cells [Barrett et al., 1996]. The equivalent
pattern of PDGF b-receptor expression was
observed in MEF-2 cells. As a result, the rela-
tionship between LRP-1 and PDGF b-receptor
expression was maintained under all culture
conditions. LRP-1 levels were also increased in
MEF-1 cells, when the cells were cultured in
serum-free medium (n¼ 4); however, the effect
was modest.
To determine themechanism bywhich LRP-1

expression is associated with increased PDGF
b-receptor levels inMEFs, we performedNorth-

ern blot analysis to detect PDGF b-receptor
mRNA. The level of PDGF b-receptor mRNA
was decreased by about 40% in MEF-2 cells,
compared with LRP-1-expressing MEF-1 cells
(Fig. 2B), suggesting that LRP-1 regulates
PDGF b-receptor expression in MEFs by alter-
ing RNA transcription and/or stability.

Regulation of PDGF b-Receptor
in Other Cell Lines

To assess the effects of LRP-1 expression on
PDGF b-receptor levels in a second model
system, we utilized an siRNA approach. In HT
1080 cells, synthetic duplex siRNA induced

Fig. 2. Regulation of PDGF b-receptor expression. A: MEF-1
and MEF-2 cells were plated in 100 mm2 culture dishes at low
density (3.5� 103/mm2) (L) or at high-density (3.5�104/mm2)
(H). Cultures were maintained for 24 h in DMEM with (þ) or
without (�) 10% fetal bovine serum (FBS). Equal amounts of
cellular proteinwere subjected to immunoblot analysis for PDGF
b-receptor and for LRP-1, using antibody 11H4. B: Total cellular
RNA was isolated from confluent cultures of MEF-1 and MEF-2
cells. Northern blots were probed for PDGF b-receptor mRNA
and for b-actin mRNA, as a control for load. Densitometry was
performed and analyzed using ImageQuant software. The bar
graph compares PDGF b-receptor mRNA in MEF-1 and MEF-2
cells (mean� SEM, n¼4).
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maximum knock-down of LRP-1 at about 72 h
(Fig. 3A). An 80% decrease in LRP-1 was
observed at that time (Fig. 3B). Concurrently,
we observed a 50%decrease inPDGF b-receptor,
compared with control cultures that were
treated with transfection reagent alone. Speci-
ficity was demonstrated because LRP-1 knock-
down did not affect cellular levels of EGF
receptor or b-actin. Furthermore, a scrambled
LRP-1 siRNA duplex had no effect on LRP-1 or
PDGF b-receptor (results not shown). Thus, in
HT 1080 cells, as in MEFs, LRP-1 expression is
associated with increased levels of PDGF b-
receptor. However, the relationship between
LRP-1 expression andPDGF b-receptorwas cell
type-specific.Wewere not able to demonstrate a
decrease in PDGF b-receptor in LRP-1-deficient
CHO cells [FitzGerald et al., 1995] or when
LRP-1was knocked down by 70%with siRNA in
human VSMCs (results not shown).

Response to PDGF-BB in LRP-1-Deficient Cells

Because PDGF-BB binds to both PDGF
receptors and LRP-1 [Loukinova et al., 2002],
we tested whether LRP-1 influences the
kinetics of PDGF b-receptor phosphorylation
or survival following exposure to PDGF-BB.

Confluent cultures of MEF-1 and MEF-2 cells
were serum-deprived for 18 h and then treated
with PDGF-BB (0.8 nM). In both cell types, we
observed tyrosine phosphorylation of a 190-kDa
band, corresponding to the mature form of the
PDGF b-receptor (Fig. 4A). Phosphorylation
persisted for 1–30 min. This was followed by
disappearance of the 190 kDa band, probably
due to degradation, as was anticipated [Sorkin
et al., 1991]. When the total amount of 190-kDa
PDGF b-receptor was analyzed by densitome-
try, a modest survival advantage was observed
from 1 to 30 min in LRP-1-expressing cells
(Fig. 4B); however, by 2 h, PDGF b-receptor
declined by approximately 80% in both cell
types. Thus, LRP-1 did not alter the ultimate
extent of PDGF b-receptor degradation after
exposure to a high concentration of PDGF-BB.

Fig. 3. Effects of LRP-1 knock-down on PDGF b-receptor levels
in HT 1080 cells. A: HT 1080 cells were transfected with
synthetic duplex siRNA targeting human LRP-1. Immunoblot
analysis was performed to detect LRP-1 in cultures treated with
siRNA (þ) or with transfection reagent only (�), at the indicated
times after initiating transfection. LRP-1 was detected with
antibody 8G1. B: HT 1080 cells that were treatedwith siRNA (þ)
or with transfection reagent alone (�) were extracted 72 h later
and subjected to immunoblot analysis to detect the indicated
proteins. Immunoblots were subjected to densitometry and the
level of each proteinwas compared in siRNA-treated and control
cultures (mean� SEM, n¼ 3).

Fig. 4. Treatment ofMEFswith PDGF-BB.A: Confluent cultures
of MEF-1 (LRP-1þ/þ) and MEF-2 (LRP-1�/�) cells were serum-
starved for 18 h. The cells were then treated with PDGF-BB
(0.8 nM) for the indicated times. Cell extracts were prepared.
Equal amounts of cellular protein were subjected to immunoblot
analysis for PDGF b-receptor and phosphotyrosine. The major
band that was detected with phosphotyrosine-specific antibody
corresponded in mobility exactly to the 190-kDamature form of
the PDGF b-receptor, as anticipated, and is thus labeled ‘‘pY-
PDGF b-r.’’ B: Densitometry was performed and the level of
mature PDGF b-receptor (190-kDa band from upper immuno-
blot in each series) was plotted as a function of time (mean�
SEM, n¼3).
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We also tested whether LRP-1 affects PDGF
b-receptor survival in cells treated with lower
concentrations of PDGF-BB over an extended
period of time (8 h). Our strategy was to pre-
treat MEF-1 cells for 30 min with RAP, which
binds to LRP-1 and blocks the binding of other
LRP-1 ligands [Herz et al., 1991]. Association of
PDGF-BB with LRP-1 is at least partially
blocked by RAP [Loukinova et al., 2002]. Thus,
we hypothesized that RAPmay block the forma-
tion of bridged receptor complexes in which
PDGF-BB binds simultaneously to the b-recep-
tor and LRP-1. The long incubation time was
chosen to potentially reveal subtle changes in
the recycling efficiency of PDGF b-receptor,
which may be due to LRP-1.
Figure 5A shows a control experiment, in

which 180 nM RAP entirely blocked specific-
binding of activated a2-macroglobulin to LRP-1,
proving that our RAP preparation is active.
However, the same concentration of RAP failed
to affect the extent of PDGF b-receptor degrada-
tion or the change in cell-surface PDGF b-
receptor, after exposure to PDGF-BB (Fig. 5B).
In both MEF-1 cells and rat VSMCs, PDGF-BB
at concentrations of 0.2 nM or higher induced
significant loss of cell-surface and total PDGF b-
receptor. PDGF-BB at 0.01–0.04 nM had little
or no effect on these levels. These results argue
against a model in which LRP-1 regulates
PDGF b-receptor by forming bridged receptor
complexes that undergo endocytosis as a unit,
as has been demonstrated for LRP-1 and other
receptors, such as uPAR and TF [Conese et al.,
1995; Knauer et al., 1996; Hamik et al., 1999].

DISCUSSION

VSMC-specificknock-out of theLRP-1gene in
the mouse up-regulates PDGF b-receptor levels
in these cells and increases the degree of PDGF
b-receptor tyrosine-phosphorylation [Boucher
et al., 2003]. There are multiple possible expla-
nations for this result. A unique activity of LRP-
1 and related receptors of the LDL receptor
family is the ability to facilitate the endocytosis
of othermembraneproteins [Conese et al., 1995;
Knauer et al., 1996; Hamik et al., 1999].
Because PDGF-BB is a bifunctional dimer,
which binds to both PDGF receptors and LRP-
1, we hypothesized that bridged receptor com-
plexes may form and that these complexes may
alter the signaling response to PDGF-BB or
survival of PDGF receptors. We found no evi-

dence that this is the case. PDGF-BB-induced
phosphorylation of b-receptors was comparable
in LRP-1-expressing and deficient cells. The
extent of b-receptor degradation, following
PDGF-BB treatment, was comparable in LRP-
1-expressing and -deficient cells. Furthermore,
RAP had no effect on PDGF b-receptor survival

Fig. 5. Effects of the receptor associated protein (RAP) on
PDGF-BB-induced PDGF b-receptor degradation in MEF-1 cells
and rat vascular smooth muscle cells (VSMCs). A: 125I-labeled
activated a2-macroglobulin (1.0 nM) was incubated with RAW
264.7 cells, which are a rich source of LRP-1, in the presence of
180 nM glutathione-S-transferase (GST)-RAP or 200 nM unla-
beled activated a2-macroglobulin. By convention, specific 125I-
a2-macroglobulin binding represents that which is blocked by
excess unlabeled a2-macroglobulin. GST-RAP completely
blocked specific binding of 125I-a2-macroglobulin. B: Confluent
cultures of MEF-1 cells and rat VSMCs were serum-starved for
18h. The cellswerepre-treatedwith 180nMGST-RAP for 30min
and then treated with the indicated concentrations of PDGF-BB
for 8 h, in the presence or absence of RAP. The cells were then
chilled to 48C. Surface proteins were biotinylated and Strepta-
vidin affinity-precipitates were prepared. These were subjected
to immunoblot analysis for PDGF b-receptor (PDGF b-r cell
surface). Alternatively, equal amount of cellular protein from
whole cell extracts were subjected to immunoblot analysis for
total PDGF b-receptor (PDGF b-r total).
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in MEFs or VSMCs that were exposed to low
concentrations of PDGF-BB over a prolonged
period of time.

An unanticipated finding was the relation-
ship between LRP-1 expression and PDGF
b-receptor expression in fibroblasts and fibro-
sarcoma cells. MEF-2 cells, which are LRP-1
deficient, demonstrated more than a 50% dec-
rease in total and cell-surface PDGF b-receptor.
A number of results support the hypothesis that
this decrease is directly related to LRP-1
deficiency. First, we compared MEF-2 cells to
two separate LRP-1-expressing MEF lines, one
that had been selected with PEA and one that
hadnot [WillnowandHerz, 1994]. The twoLRP-
1-expressing cell lines had equivalent levels of
PDGF b-receptor. Second, we examined MEF-2
cells that were transfected for re-expression of
LRP-1. The amount of PDGF b-receptor was
increased in these cells. Thus, LRP-1 re-expres-
sion rescued the phenotype associated with
LRP-1 deficiency in MEF-2 cells.

The equivalent relationship between LRP-1
expression and PDGF b-receptor levels was
demonstrated in HT 1080 cells. These fibrosar-
coma cells express approximately 5,000 copies
of cell-surface LRP-1/cell [Webb et al., 2000].
With synthetic siRNA, we knocked down LRP-1
by 80% in HT 1080 cells and observed a
concomitant decrease in PDGF b-receptor. This
was a specific effect because the level of EGF
receptorwas unchanged. InMEFs, the effects of
LRP-1 on PDGF b-receptor were explained by
differences in the amount of PDGF b-receptor
mRNA, suggesting altered gene transcription
or mRNA stability. These processes may be
controlled downstream of cell-signaling path-
ways that are regulated by LRP-1 or by other
cell-signaling receptors such as uPAR, which
are activated when the function or expression of
LRP-1 is neutralized [Ma et al., 2002]. Another
possible mechanism for the regulation of PDGF
b-receptormRNA is suggested by recent studies
demonstrating that the intracytoplasmic tail of
LRP-1may be cleaved, yielding a fragment that
enters the nucleus and functions as a transcrip-
tion regulator [May et al., 2002; Kinoshita et al.,
2003].

The effects of LRP-1 onPDGF b-receptorwere
cell type-specific. LRP-1 expression was not
associated with increased levels of PDGF b-
receptor in CHO cells or in human VSMCs.
Incomplete LRP-1 knock-down (70%) with
siRNA may explain the lack of an effect in the

VSMCs. Another possible contributing factor is
the very high level of LRP-1 in VSMCs. Rat
VSMCs express over 20,000 copies of LRP-1/cell
[Weaver et al., 1996].

Our in vitro experiments do not provide an
explanation for the results observed when LRP-
1 isneutralized inVSMCs invivo [Boucheretal.,
2003]; however, we can argue against specific
models, as described above. The results pre-
sented here are most consistent with a model in
which the effects of LRP-1 on PDGF b-receptor
expression and activity in vivo are indirect,
reflecting the cell signaling pathways that are
downstream of LRP-1 and/or its co-receptors,
such as uPAR. Furthermore, in the intact blood
vessel, the opportunity exists for paracrine
regulatory pathways to have a substantial
impact. These cannot be readily modeled or
duplicated in vitro.
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